Tighter Security for Efficient Lattice Cryptography via the Rényi Divergence of Optimized Orders

نویسندگان

  • Katsuyuki Takashima
  • Atsushi Takayasu
چکیده

In security proofs of lattice based cryptography, bounding the closeness of two probability distributions is an important procedure. To measure the closeness, the Rényi divergence has been used instead of the classical statistical distance. Recent results have shown that the Rényi divergence offers security reductions with better parameters, e.g. smaller deviations for discrete Gaussian distributions. However, since previous analyses used a fixed order Rényi divergence, i.e., order two, they lost tightness of reductions. To overcome the deficiency, we adaptively optimize the orders based on the advantages of the adversary for several lattice-based schemes. The optimizations enable us to prove the security with both improved efficiency and tighter reductions. Indeed, our analysis offers security reductions with smaller parameters than the statistical distance based analysis and the reductions are tighter than those of previous Rényi divergence based analyses. As applications, we show tighter security reductions for sampling discrete Gaussian distributions with smaller precomputed tables for Bimodal Lattice Signature Scheme (BLISS), and the variants of learning with errors (LWE) problem and the small integer solution (SIS) problem called k-LWE and k-SIS, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharper Bounds in Lattice-Based Cryptography Using the Rényi Divergence

The Rényi divergence is a measure of divergence between distributions. It has recently found several applications in lattice-based cryptography. The contribution of this paper is twofold. First, we give theoretic results which renders it more efficient and easier to use. This is done by providing two lemmas, which give tight bounds in very common situations – for distributions that are tailcut ...

متن کامل

QTRU: quaternionic version of the NTRU public-key cryptosystems

In this paper we will construct a lattice-based public-key cryptosystem using non-commutative quaternion algebra, and since its lattice does not fully fit within Circular and Convolutional Modular Lattice (CCML), we prove it is arguably more secure than the existing lattice-based cryptosystems such as NTRU. As in NTRU, the proposed public-key cryptosystem relies for its inherent securi...

متن کامل

GGHLite: More Efficient Multilinear Maps from Ideal Lattices

The GGH Graded Encoding Scheme [10], based on ideal lattices, is the first plausible approximation to a cryptographic multilinear map. Unfortunately, using the security analysis in [10], the scheme requires very large parameters to provide security for its underlying “encoding re-randomization” process. Our main contributions are to formalize, simplify and improve the efficiency and the securit...

متن کامل

A New Ring-Based SPHF and PAKE Protocol On Ideal Lattices

emph{ Smooth Projective Hash Functions } ( SPHFs ) as a specific pattern of zero knowledge proof system are fundamental tools to build many efficient cryptographic schemes and protocols. As an application of SPHFs, emph { Password - Based Authenticated Key Exchange } ( PAKE ) protocol is well-studied area in the last few years. In 2009, Katz and Vaikuntanathan described the first lattice-based ...

متن کامل

NFLlib: NTT-Based Fast Lattice Library

Recent years have witnessed an increased interest in lattice cryptography. Besides its strong security guarantees, its simplicity and versatility make this powerful theoretical tool a promising competitive alternative to classical cryptographic schemes. In this paper, we introduce NFLlib, an efficient and open-source C++ library dedicated to ideal lattice cryptography in the widely-spread polyn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015